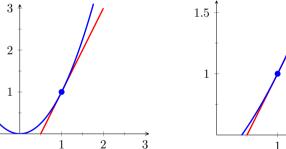
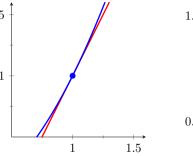
Linear Approximation and Differentials

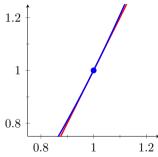
Tamara Kucherenko

Linear Approximation

Consider the parabola $y = x^2$ and its tangent line y = 2x - 1 at the point (1,1)







By zooming in toward a point on the graph, we see that the graph looks more and more like its tangent line.

Linear Approximation

By definition,
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
. So when x is close to a ,

$$f'(a) \approx \frac{f(x) - f(a)}{x - a}$$
$$f'(a)(x - a) \approx f(x) - f(a)$$
$$f(a) + f'(a)(x - a) \approx f(x)$$

The approximation

$$f(x) \approx f(a) + f'(a)(x - a)$$

is called the $\underline{\text{linear approximation}}$ or $\underline{\text{tangent line approximation}}$ of f at a.

The linear function L(x) = f(a) + f'(a)(x - a) is called the <u>linearization</u> of f at a.

Example 1

Find the linearization of the function $f(x) = \sqrt{x-1}$ at a=10 and use it to approximate $\sqrt{8.95}$.

The linearization of f at 10 is L(x) = f(10) + f'(10)(x - 10). We compute

•
$$f(10) = \sqrt{10 - 1} = \sqrt{9} = 3$$

•
$$f'(x) = (\sqrt{x-1})' = \frac{1}{2\sqrt{x-1}}$$
 $\Rightarrow f'(10) = \frac{1}{2\sqrt{10-1}} = \frac{1}{6}$

We substitute the values into the equation for L(x) and get

$$L(x) = 3 + \frac{1}{6}(x - 10) = \frac{1}{6}x + \frac{4}{3}$$

To approximate $\sqrt{8.95}$ we set x-1=8.95 and get x=9.95. Therefore

$$\sqrt{8.95} = f(9.95) \approx L(9.95) = 3 + \frac{1}{6}(9.95 - 10) = 3 - 0.05 = 2.95$$

Example 2

Use a linear approximation to estimate $\sqrt[3]{8.5}$

Consider $f(x) = \sqrt[3]{x}$ and a = 8. Then $\sqrt[3]{8.5} \approx f(8) + f'(8)(8.5 - 8)$. We compute

•
$$f(8) = \sqrt[3]{8} = 2$$

•
$$f'(x) = (\sqrt[3]{x})' = \frac{1}{3}x^{-2/3}$$
 \Rightarrow $f'(8) = \frac{1}{3}8^{-2/3} = \frac{1}{3} \cdot \frac{1}{(\sqrt[3]{8})} = \frac{1}{12}$

We substitute the values into the approximation and get

$$\sqrt[3]{8.5} \approx f(8) + f'(8)(8.5 - 8) = 2 + \frac{1}{12} \cdot 0.5 = 2 + \frac{1}{24} = \frac{29}{24}$$

Differentials

The ideas of linear approximation can be expressed in terms of differentials.

Definition

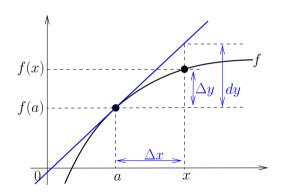
- If x is an independent variable then the <u>differential</u> dx represents the change in the value of x (usually infinitely small)
- If y = f(x) then the <u>differential</u> dy = f'(x)dx.

Example. Find the differential dy of each function

- (a) $y = \sin^2 x \implies dy = (\sin^2 x)' dx = 2\sin x \cos x dx$
- (b) $y = \tan(2+5t)$ \Rightarrow $dy = (\tan(2+5t))'dt = 5\sec^2(2+5t)dt$
- (c) $y = u\sqrt{u+1}$ \Rightarrow $dy = (u\sqrt{u+1})'du = \left(\sqrt{u+1} + \frac{u}{2\sqrt{u+1}}\right)du$

Differentials

We use the tangent line at (a, f(a)) to approximate the curve y = f(x) for x near a.



The change in x is $\Delta x = x - a$. The change in y is $\Delta y = f(x) - f(a)$.

The linear approximation of f at a

$$f(x) \approx f(a) + f'(a)(x - a)$$

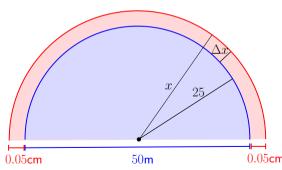
$$f(x) - f(a) \approx f'(a)(x - a)$$

$$\Delta y \approx f'(a)\Delta x$$
 When $dx = \Delta x$, $\Delta y \approx f'(a)dx = dy$

$$\Delta y \approx dy$$
 when $dx = \Delta x$

Example

Use differentials to estimate the amount of paint needed to apply a coat of paint 0.05 cm thick to a hemispherical dome with diameter 50 m.



Denote by y the volume of the hemisphere of radius x.

$$y = \frac{2}{3}\pi x^3$$

$$\Delta x = 0.05 \text{cm} = 0.0005 \text{m}$$

The amount of paint is $y(25.0005) - y(25) = \Delta y$

$$\Delta y \approx dy = y'(25)dx = y'(25) \cdot 0.0005$$

$$y' = \frac{2}{3}\pi \cdot 3x^2 \quad \Rightarrow \quad y'(25) = 2\pi(25)^2 = 1250\pi$$

$$\Delta y \approx 1250\pi \cdot 0.0005 = \boxed{0.625\pi \text{m}^3}$$

Summary

- The <u>Linear Approximation</u> is the estimate $f(x) \approx f(a) + f'(a)(x-a)$ when x is close to a.
- The function L(x) = f(a) + f'(a)(x a) is called the <u>linearization</u> of f at a.
- If y = f(x) the <u>differential</u> of y is

$$dy = f'(x)dx$$

• In terms of differentials the Linear Approximation is the statement $\Delta y \approx dy$ where Δy is the change in f(x) for a given change dx in x.

THE END